Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
Mais filtros










Intervalo de ano de publicação
3.
Int J Mol Sci ; 24(13)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37446330

RESUMO

We previously described the role of low-density lipoprotein (LDL) in aggressiveness in papillary thyroid cancer (PTC). Moreover, the MAPK signaling pathway in the presence of BRAF V600E mutation is associated with more aggressive PTC. Although the link between MAPK cascade and LDL receptor (LDLR) expression has been previously described, it is unknown whether LDL can potentiate the adverse effects of PTC through it. We aimed to investigate whether the presence of LDL might accelerate the oncogenic processes through MAPK pathway in presence or absence of BRAF V600E in two thyroid cell lines: TPC1 and BCPAP (wild-type and BRAF V600E, respectively). LDLR, PI3K-AKT and RAS/RAF/MAPK (MEK)/ERK were analyzed via Western blot; cell proliferation was measured via MTT assay, cell migration was studied through wound-healing assay and LDL uptake was analyzed by fluorometric and confocal analysis. TPC1 demonstrated a time-specific downregulation of the LDLR, while BCPAP resulted in a receptor deregulation after LDL exposition. LDL uptake was increased in BCPAP over-time, as well as cell proliferation (20% higher) in comparison to TPC1. Both cell lines differed in migration pattern with a wound closure of 83.5 ± 9.7% after LDL coculture in TPC1, while a loss in the adhesion capacity was detected in BCPAP. The siRNA knockdown of LDLR in LDL-treated BCPAP cells resulted in a p-ERK expression downregulation and cell proliferation modulation, demonstrating a link between LDLR and MAPK pathway. The modulation of BRAF-V600E using vemurafenib-impaired LDLR expression decreased cellular proliferation. Our results suggest that LDLR regulation is cell line-specific, regulating the RAS/RAF/MAPK (MEK)/ERK pathway in the LDL-signaling cascade and where BRAF V600E can play a critical role. In conclusion, targeting LDLR and this downstream signaling cascade, could be a new therapeutic strategy for PTC with more aggressive behavior, especially in those harboring BRAF V600E.


Assuntos
Proteínas Proto-Oncogênicas B-raf , Neoplasias da Glândula Tireoide , Humanos , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Fosfatidilinositol 3-Quinases/genética , Mutação , Neoplasias da Glândula Tireoide/patologia , Câncer Papilífero da Tireoide/genética , Câncer Papilífero da Tireoide/patologia , Receptores de LDL/genética , Lipoproteínas LDL/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Linhagem Celular Tumoral
4.
Semin Cancer Biol ; 93: 36-51, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37156344

RESUMO

Obesity has been closely related to cancer progression, recurrence, metastasis, and treatment resistance. We aim to review recent progress in the knowledge on the obese macroenvironment and the generated adipose tumor microenvironment (TME) inducing lipid metabolic dysregulation and their influence on carcinogenic processes. Visceral white adipose tissue expansion during obesity exerts systemic or macroenvironmental effects on tumor initiation, growth, and invasion by promoting inflammation, hyperinsulinemia, growth-factor release, and dyslipidemia. The dynamic relationship between cancer and stromal cells of the obese adipose TME is critical for cancer cell survival and proliferation as well. Experimental evidence shows that secreted paracrine signals from cancer cells can induce lipolysis in cancer-associated adipocytes, causing them to release free fatty acids and acquire a fibroblast-like phenotype. Such adipocyte delipidation and phenotypic change is accompanied by an increased secretion of cytokines by cancer-associated adipocytes and tumor-associated macrophages in the TME. Mechanistically, the availability of adipose TME free fatty acids and tumorigenic cytokines concomitant with the activation of angiogenic processes creates an environment that favors a shift in the cancer cells toward an aggressive phenotype associated with increased invasiveness. We conclude that restoring the aberrant metabolic alterations in the host macroenvironment and in adipose TME of obese subjects would be a therapeutic option to prevent cancer development. Several dietary, lipid-based, and oral antidiabetic pharmacological therapies could potentially prevent tumorigenic processes associated with the dysregulated lipid metabolism closely linked to obesity.


Assuntos
Metabolismo dos Lipídeos , Neoplasias , Humanos , Ácidos Graxos não Esterificados/metabolismo , Ácidos Graxos não Esterificados/farmacologia , Adipócitos/metabolismo , Obesidade/complicações , Citocinas/metabolismo , Neoplasias/metabolismo , Carcinogênese/metabolismo , Microambiente Tumoral
5.
Metab Eng ; 77: 256-272, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37088334

RESUMO

Obesity and its associated metabolic comorbidities are a rising global health and social issue, with novel therapeutic approaches urgently needed. Adipose tissue plays a key role in the regulation of energy balance and adipose tissue-derived mesenchymal stem cells (AT-MSCs) have gained great interest in cell therapy. Carnitine palmitoyltransferase 1A (CPT1A) is the gatekeeper enzyme for mitochondrial fatty acid oxidation. Here, we aimed to generate adipocytes expressing a constitutively active CPT1A form (CPT1AM) that can improve the obese phenotype in mice after their implantation. AT-MSCs were differentiated into mature adipocytes, subjected to lentivirus-mediated expression of CPT1AM or the GFP control, and subcutaneously implanted into mice fed a high-fat diet (HFD). CPT1AM-implanted mice showed lower body weight, hepatic steatosis and serum insulin and cholesterol levels alongside improved glucose tolerance. HFD-induced increases in adipose tissue hypertrophy, fibrosis, inflammation, endoplasmic reticulum stress and apoptosis were reduced in CPT1AM-implanted mice. In addition, the expression of mitochondrial respiratory chain complexes was enhanced in the adipose tissue of CPT1AM-implanted mice. Our results demonstrate that implantation of CPT1AM-expressing AT-MSC-derived adipocytes into HFD-fed mice improves the obese metabolic phenotype, supporting the future clinical use of this ex vivo gene therapy approach.


Assuntos
Intolerância à Glucose , Animais , Camundongos , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Intolerância à Glucose/genética , Intolerância à Glucose/metabolismo , Inflamação/metabolismo , Obesidade/genética , Obesidade/tratamento farmacológico , Obesidade/metabolismo
6.
J Med Chem ; 66(9): 6251-6262, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37116069

RESUMO

The accumulation of lipids in cardiomyocytes contributes to cardiac dysfunction. The specific blockage of cardiomyocyte cholesteryl ester (CE) loading by antibodies (Abs) against the P3 sequence (Gly1127-Cys1140) of the LRP1 receptor improves cardiac insulin sensitivity. The impact of anti-P3 Abs on high-fat diet (HFD)-induced cardiac extracellular matrix (ECM) biophysical alterations was analyzed. Both IrP (without Abs) and P3-immunized rabbits (with Abs) were randomized into groups fed either HFD or a standard chow diet. Cardiac lipids, proteins, and carbohydrates were characterized by Fourier transform infrared spectroscopy in the attenuated total reflectance mode. The hydric organization and physical structure were determined by differential scanning calorimetry. HFD increased the levels of esterified lipids, collagen, and α-helical structures and upregulated fibrosis, bound water, and ECM plasticization in the heart. The inhibitory effect of anti-P3 Abs on cardiac CE accumulation was sufficient to reduce the collagen-filled extracellular space, the level of fibrosis, and the amount of bound water but did not counteract ECM plasticization in the heart of hypercholesterolemic rabbits.


Assuntos
Hipercolesterolemia , Animais , Coelhos , Hipercolesterolemia/terapia , Hipercolesterolemia/metabolismo , Ésteres do Colesterol/metabolismo , Colágeno , Fibrose , Matriz Extracelular/metabolismo , Dieta Hiperlipídica
7.
Cell Metab ; 35(4): 601-619.e10, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36977414

RESUMO

Adipose tissue modulates energy homeostasis by secreting leptin, but little is known about the factors governing leptin production. We show that succinate, long perceived as a mediator of immune response and lipolysis, controls leptin expression via its receptor SUCNR1. Adipocyte-specific deletion of Sucnr1 influences metabolic health according to nutritional status. Adipocyte Sucnr1 deficiency impairs leptin response to feeding, whereas oral succinate mimics nutrient-related leptin dynamics via SUCNR1. SUCNR1 activation controls leptin expression via the circadian clock in an AMPK/JNK-C/EBPα-dependent manner. Although the anti-lipolytic role of SUCNR1 prevails in obesity, its function as a regulator of leptin signaling contributes to the metabolically favorable phenotype in adipocyte-specific Sucnr1 knockout mice under standard dietary conditions. Obesity-associated hyperleptinemia in humans is linked to SUCNR1 overexpression in adipocytes, which emerges as the major predictor of adipose tissue leptin expression. Our study establishes the succinate/SUCNR1 axis as a metabolite-sensing pathway mediating nutrient-related leptin dynamics to control whole-body homeostasis.


Assuntos
Relógios Circadianos , Leptina , Animais , Humanos , Camundongos , Adipócitos/metabolismo , Metabolismo Energético/fisiologia , Leptina/metabolismo , Camundongos Knockout , Obesidade/metabolismo , Succinatos/metabolismo
8.
Int J Mol Sci ; 24(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36768264

RESUMO

Trimethylamine-N-oxide (TMAO) is the main diet-induced metabolite produced by the gut microbiota, and it is mainly eliminated through renal excretion. TMAO has been correlated with an increased risk of atherosclerotic cardiovascular disease (ASCVD) and related complications, such as cardiovascular mortality or major adverse cardiovascular events (MACE). Meta-analyses have postulated that high circulating TMAO levels are associated with an increased risk of cardiovascular events and all-cause mortality, but the link between TMAO and CVD remains not fully consistent. The results of prospective studies vary depending on the target population and the outcome studied, and the adjustment for renal function tends to decrease or reverse the significant association between TMAO and the outcome studied, strongly suggesting that the association is substantially mediated by renal function. Importantly, one Mendelian randomization study did not find a significant association between genetically predicted higher TMAO levels and cardiometabolic disease, but another found a positive causal relationship between TMAO levels and systolic blood pressure, which-at least in part-could explain the link with renal function. The mechanisms by which TMAO can increase this risk are not clearly elucidated, but current evidence indicates that TMAO induces cholesterol metabolism alterations, inflammation, endothelial dysfunction, and platelet activation. Overall, there is no fully conclusive evidence that TMAO is a causal factor of ASCVD, and, especially, whether TMAO induces or just is a marker of hypertension and renal dysfunction requires further study.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/fisiologia , Doenças Cardiovasculares/induzido quimicamente , Estudos Prospectivos , Aterosclerose/metabolismo , Metilaminas/metabolismo
9.
Nat Struct Mol Biol ; 30(3): 321-329, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36782049

RESUMO

Mycoplasma pneumoniae, responsible for approximately 30% of community-acquired human pneumonia, needs to extract lipids from the host environment for survival and proliferation. Here, we report a comprehensive structural and functional analysis of the previously uncharacterized protein P116 (MPN_213). Single-particle cryo-electron microscopy of P116 reveals a homodimer presenting a previously unseen fold, forming a huge hydrophobic cavity, which is fully accessible to solvent. Lipidomics analysis shows that P116 specifically extracts lipids such as phosphatidylcholine, sphingomyelin and cholesterol. Structures of different conformational states reveal the mechanism by which lipids are extracted. This finding immediately suggests a way to control Mycoplasma infection by interfering with lipid uptake.


Assuntos
Adesinas Bacterianas , Mycoplasma pneumoniae , Humanos , Microscopia Crioeletrônica , Mycoplasma pneumoniae/metabolismo , Lipídeos , Colesterol/metabolismo
10.
Diagnostics (Basel) ; 12(11)2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36428843

RESUMO

High circulating concentrations of the gut microbiota-derived metabolite trimethylamine N-oxide (TMAO) are significantly associated with the risk of obesity and type 2 diabetes (T2D). We aimed at evaluating the impact of glycemic control and bariatric surgery on circulating concentrations of TMAO and its microbiota-dependent intermediate, γ-butyrobetaine (γBB), in newly diagnosed T2D patients and morbidly obese subjects following a within-subject design. Based on HbA1c concentrations, T2D patients achieved glycemic control. However, the plasma TMAO and γBB concentrations were significantly increased, without changes in estimated glomerular filtration rate. Bariatric surgery was very effective in reducing weight in obese subjects. Nevertheless, the surgery reduced plasma γBB concentrations without affecting TMAO concentrations and the estimated glomerular filtration rate. Considering these results, an additional experiment was carried out in male C57BL/6J mice fed a Western-type diet for twelve weeks. Neither diet-induced obesity nor insulin resistance were associated with circulating TMAO and γBB concentrations in these genetically defined mice strains. Our findings do not support that glycemic control or bariatric surgery improve the circulating concentrations of TMAO in newly diagnosed T2D and morbidly obese patients.

11.
Int J Mol Sci ; 23(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36293305

RESUMO

Increased serum levels of homocysteine (Hcy) is a risk factor for cardiovascular disease and is specifically linked to various diseases of the vasculature such as atherosclerosis. However, the precise mechanisms by which Hcy contributes to this condition remain elusive. During the development of atherosclerosis, epigenetic modifications influence gene expression. As such, epigenetic modifications are an adaptive response to endogenous and exogenous factors that lead to altered gene expression by methylation and acetylation reactions of different substrates and the action of noncoding RNA including microRNAs (miRNAs). Epigenetic remodeling modulates cell biology in both physiological and physiopathological conditions. DNA and histone modification have been identified to have a crucial role in the progression of atherosclerosis. However, the potential role of miRNAs in hyperHcy (HHcy)-related atherosclerosis disease remains poorly explored and might be essential as well. There is no review available yet summarizing the contribution of miRNAs to hyperhomocystein-mediated atherogenicity or their potential as therapeutic targets even though their important role has been described in numerous studies. Specifically, downregulation of miR-143 or miR-125b has been shown to regulate VSCMs proliferation in vitro. In preclinical studies, downregulation of miR-92 or miR195-3p has been shown to increase the accumulation of cholesterol in foam cells and increase macrophage inflammation and atherosclerotic plaque formation, respectively. Another preclinical study found that there is a reciprocal regulation between miR-148a/152 and DNMT1 in Hcy-accelerated atherosclerosis. Interestingly, a couple of studies have shown that miR-143 or miR-217 may be used as potential biomarkers in patients with HHcy that may develop atherosclerosis. Moreover, the current review will also update current knowledge on miRNA-based therapies, their challenges, and approaches to deal with Hcy-induced atherosclerosis.


Assuntos
Aterosclerose , Hiper-Homocisteinemia , MicroRNAs , Humanos , Hiper-Homocisteinemia/complicações , Hiper-Homocisteinemia/genética , MicroRNAs/metabolismo , Epigênese Genética , Aterosclerose/metabolismo , Colesterol/metabolismo , Biomarcadores , Homocisteína/metabolismo
12.
Int J Mol Sci ; 23(16)2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36012637

RESUMO

The main aim of this work is to review the mechanisms via which high-density lipoprotein (HDL)-mediated cholesterol trafficking through the central nervous system (CNS) occurs in the context of Alzheimer's disease (AD). Alzheimer's disease is characterized by the accumulation of extracellular amyloid beta (Aß) and abnormally hyperphosphorylated intracellular tau filaments in neurons. Cholesterol metabolism has been extensively implicated in the pathogenesis of AD through biological, epidemiological, and genetic studies, with the APOE gene being the most reproducible genetic risk factor for the development of AD. This manuscript explores how HDL-mediated cholesterol is transported in the CNS, with a special emphasis on its relationship to Aß peptide accumulation and apolipoprotein E (ApoE)-mediated cholesterol transport. Indeed, we reviewed all existing works exploring HDL-like-mediated cholesterol efflux and cholesterol uptake in the context of AD pathogenesis. Existing data seem to point in the direction of decreased cholesterol efflux and the impaired entry of cholesterol into neurons among patients with AD, which could be related to impaired Aß clearance and tau protein accumulation. However, most of the reviewed studies have been performed in cells that are not physiologically relevant for CNS pathology, representing a major flaw in this field. The ApoE4 genotype seems to be a disruptive element in HDL-like-mediated cholesterol transport through the brain. Overall, further investigations are needed to clarify the role of cholesterol trafficking in AD pathogenesis.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Apolipoproteínas E/metabolismo , Encéfalo/metabolismo , Colesterol/metabolismo , HDL-Colesterol/metabolismo , Humanos
13.
Biomed Pharmacother ; 152: 113270, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35709652

RESUMO

BACKGROUND: Antibodies against the P3 sequence (Gly1127-Cys1140) of LRP1 (anti-P3 Abs) specifically block cholesteryl ester (CE) accumulation in vascular cells. LRP1 is a key regulator of insulin receptor (InsR) trafficking in different cell types. The link between CE accumulation and the insulin response are largely unknown. Here, the effects of P3 peptide immunization on the alterations induced by a high-fat diet (HFD) in cardiac insulin response were evaluated. METHODS: Irrelevant (IrP)- or P3 peptide-immunized rabbits were randomized into groups fed either HFD or normal chow. Cardiac lipid content was characterized by thin-layer chromatography, confocal microscopy, and electron microscopy. LRP1, InsR and glucose transporter type 4 (GLUT4) levels were determined in membranes and total lysates from rabbit heart. The interaction between InsR and LRP1 was analyzed by immunoprecipitation and confocal microscopy. Insulin signaling activity and glucose uptake were evaluated in HL-1 cells exposed to rabbit serum from the different groups. FINDINGS: HFD reduces cardiac InsR and GLUT4 membrane levels and the interactions between LRP1/InsR. Targeting the P3 sequence on LRP1 through anti-P3 Abs specifically reduces CE accumulation in the heart independently of changes in the circulating lipid profile. This restores InsR and GLUT4 levels in cardiac membranes as well as the LRP1/InsR interactions of HFD-fed rabbits. In addition, anti-P3 Abs restores the insulin signaling cascade and glucose uptake in HL-1 cells exposed to hypercholesterolemic rabbit serum. INTERPRETATION: LRP1-immunotargeting can block CE accumulation within the heart with specificity, selectivity, and efficacy, thereby improving the cardiac insulin response; this has important therapeutic implications for a wide range of cardiac diseases. FUNDING: Fundació MARATÓ TV3: grant 101521-10, Instiuto de Salud Carlos III (ISCIII) and ERDFPI18/01584, Fundación BBVA Ayudas a Equipos de Investigación 2019. SECyT-UNC grants PROYECTOS CONSOLIDAR 2018-2021; FONCyT, Préstamo BID PICT grant 2015-0807 and grant 2017-4497.


Assuntos
Ésteres do Colesterol , Insulina , Animais , Ésteres do Colesterol/metabolismo , Dieta Hiperlipídica , Glucose , Insulina/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Coelhos
14.
Biomedicines ; 10(3)2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35327422

RESUMO

The notion that high-density lipoproteins (HDL) are atheroprotective is supported by different lines of evidence [...].

15.
J Clin Med ; 11(5)2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35268516

RESUMO

BACKGROUND: The present work evaluates the association between circulating concentrations of Trimethylamine-N-oxide (TMAO), gamma butyrobetaine (γBB), and trimetyllisine (TML) in controls and patients with venous thromboembolism (VTE) with coagulation parameters. METHODS: The study involved 54 VTE patients and 57 controls. Platelet function, platelet hyperreactivity, platelet adhesiveness, thrombosis-associated parameters, and thrombin generation parameters were studied. Plasma TMAO, γBB, and TML determination was performed using an ultra-high-performance liquid chromatography system coupled with mass spectrometry. RESULTS: No differences were found for TMAO, γBB, or TML concentrations between controls and VTE patients. In thrombin generation tests, TMAO, γBB, and TML showed a positive correlation with lag time and time to peak. TMAO, γBB, and TML negatively correlated with peak height. No significant differences were observed regarding TMAO, γBB, and TML concentrations between the two blood withdrawals, nor when the control and VTE patients were analyzed separately. No correlation was observed between these gut metabolites and platelet function parameters. CONCLUSIONS: No differences were found regarding TMAO, γBB, and TML concentrations between the control and VTE groups. Some correlations were found; however, they were mild or went in the opposite direction of what would be expected if TMAO and its derivatives were related to VTE risk.

16.
Front Cardiovasc Med ; 9: 777822, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35237673

RESUMO

Atherosclerotic arterial plaques and malignant solid tumors contain macrophages, which participate in anaerobic metabolism, acidosis, and inflammatory processes inherent in the development of either disease. The tissue-resident macrophage populations originate from precursor cells derived from the yolk sac and from circulating bone marrow-derived monocytes. In the tissues, they differentiate into varying functional phenotypes in response to local microenvironmental stimulation. Broadly categorized, the macrophages are activated to polarize into proinflammatory M1 and anti-inflammatory M2 phenotypes; yet, noticeable plasticity allows them to dynamically shift between several distinct functional subtypes. In atherosclerosis, low-density lipoprotein (LDL)-derived cholesterol accumulates within macrophages as cytoplasmic lipid droplets thereby generating macrophage foam cells, which are involved in all steps of atherosclerosis. The conversion of macrophages into foam cells may suppress the expression of given proinflammatory genes and thereby initiate their transcriptional reprogramming toward an anti-inflammatory phenotype. In this particular sense, foam cell formation can be considered anti-atherogenic. The tumor-associated macrophages (TAMs) may become polarized into anti-tumoral M1 and pro-tumoral M2 phenotypes. Mechanistically, the TAMs can regulate the survival and proliferation of the surrounding cancer cells and participate in various aspects of tumor formation, progression, and metastasis. The TAMs may accumulate lipids, but their type and their specific roles in tumorigenesis are still poorly understood. Here, we discuss how the phenotypic and functional plasticity of macrophages allows their multifunctional response to the distinct microenvironments in developing atherosclerotic lesions and in developing malignant tumors. We also discuss how the inflammatory reactions of the macrophages may influence the development of atherosclerotic plaques and malignant tumors, and highlight the potential therapeutic effects of targeting lipid-laden macrophages in either disease.

17.
Methods Mol Biol ; 2419: 283-292, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35237971

RESUMO

This chapter provides details on a simple and reproducible method used to determine the capacity of murine HDL to prevent the oxidation of LDL . The principle of the method is based on the rearrangement of double bonds of polyunsaturated fatty acids that occurs during the oxidation of human LDL , which generates a sigmoidal curve. The shape and length of the curve is modified in the presence of HDL , and such modifications are easily quantifiable by measuring the absorbance of conjugated dienes at 234 nm. The general technique described herein may be applied to evaluate the effect of HDL obtained from different experimental murine models of atherosclerosis.


Assuntos
Antioxidantes , Aterosclerose , Animais , Humanos , Lipoproteínas HDL/metabolismo , Lipoproteínas LDL/metabolismo , Camundongos , Oxirredução
18.
Methods Mol Biol ; 2419: 569-581, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35237989

RESUMO

This chapter provides details on the methodologies currently used to monitor macrophage cholesterol efflux in vivo in mice. The general principles and techniques described herein can be applied to evaluate the effect of different experimental pathophysiological conditions or the efficacy of different therapeutic strategies on the modulation of in vivo cholesterol efflux to plasma acceptors and the rate of reverse transport of unesterified cholesterol from macrophages to feces in mice.


Assuntos
Colesterol , Macrófagos , Animais , Transporte Biológico , HDL-Colesterol/metabolismo , HDL-Colesterol/farmacologia , Macrófagos/metabolismo , Camundongos
19.
EBioMedicine ; 76: 103874, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35152150

RESUMO

BACKGROUND: Imaging of subclinical atherosclerosis improves cardiovascular risk prediction on top of traditional risk factors. However, cardiovascular imaging is not universally available. This work aims to identify circulating proteins that could predict subclinical atherosclerosis. METHODS: Hypothesis-free proteomics was used to analyze plasma from 444 subjects from PESA cohort study (222 with extensive atherosclerosis on imaging, and 222 matched controls) at two timepoints (three years apart) for discovery, and from 350 subjects from AWHS cohort study (175 subjects with extensive atherosclerosis on imaging and 175 matched controls) for external validation. A selected three-protein panel was further validated by immunoturbidimetry in the AWHS population and in 2999 subjects from ILERVAS cohort study. FINDINGS: PIGR, IGHA2, APOA, HPT and HEP2 were associated with subclinical atherosclerosis independently from traditional risk factors at both timepoints in the discovery and validation cohorts. Multivariate analysis rendered a potential three-protein biomarker panel, including IGHA2, APOA and HPT. Immunoturbidimetry confirmed the independent associations of these three proteins with subclinical atherosclerosis in AWHS and ILERVAS. A machine-learning model with these three proteins was able to predict subclinical atherosclerosis in ILERVAS (AUC [95%CI]:0.73 [0.70-0.74], p < 1 × 10-99), and also in the subpopulation of individuals with low cardiovascular risk according to FHS 10-year score (0.71 [0.69-0.73], p < 1 × 10-69). INTERPRETATION: Plasma levels of IGHA2, APOA and HPT are associated with subclinical atherosclerosis independently of traditional risk factors and offers potential to predict this disease. The panel could improve primary prevention strategies in areas where imaging is not available. FUNDING: This study was supported by competitive grants from the Spanish Ministry of Science, Innovation and Universities (BIO2015-67580-P, PGC2018-097019-B-I00, PID2019-106814RB-I00 and SAF2016-80843-R), through the Carlos III Institute of Health-Fondo de Investigacion Sanitaria grant PRB3 (IPT17/0019 - ISCIII-SGEFI / ERDF, ProteoRed), CIBERCV and CIBERDEM, the Fundacio MaratoTV3 (grant 122/C/2015) and "la Caixa" Banking Foundation (project HR17-00247). The PESA study is co-funded equally by the Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain, and Banco Santander, Madrid, Spain. The ILERVAS study was funded by the Diputacio de Lleida. The study also receives funding from the Instituto de Salud Carlos III (PI15/02019; PI18/00610; RD16/0009) and the FEDER funds. The CNIC is supported by the Instituto de Salud Carlos III (ISCIII), the Ministerio de Ciencia, Innovacion y Universidades (MCNU) and the Pro CNIC Foundation.


Assuntos
Aterosclerose , Proteômica , Aterosclerose/diagnóstico , Biomarcadores , Estudos de Coortes , Humanos , Fatores de Risco
20.
Biomed Pharmacother ; 146: 112596, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35062066

RESUMO

OBJECTIVE: To determine whether miR-125b regulates cholesterol efflux in vivo and in vitro through the regulation of scavenger receptor type B1 (SR-B1). APPROACH AND RESULTS: We demonstrated that miR-125b is up-regulated in the human aortas of patients with CAD and is located in macrophages and vascular smooth muscle cells (VSMCs). We identified SCARB1 as a direct target of miR-125b by repressing the activity of the SCARB1 3'-untranslated region reporter construct. Moreover, the overexpression of miR-125b in both human and mouse macrophages as well as VSMCs was found to downregulated the expression of the SCARB1 and the SR-B1 protein levels, thereby impairing α-HDL-mediated macrophage cholesterol efflux in vitro. The in vivo reverse cholesterol transport (RCT) rate from non-cholesterol-loaded macrophages transfected with miR-125b to feces was also found to be decreased when compared with that of control mimic-transfected macrophages. CONCLUSIONS: Together, these results provide evidence that miR-125b downregulates SCARB1 and SR-B1 in both human and mouse macrophages as well as VSMCs, thereby impairing macrophage cholesterol efflux in vitro and the whole macrophage-specific RCT pathway in vivo.


Assuntos
HDL-Colesterol/genética , MicroRNAs/metabolismo , Receptores Depuradores/metabolismo , Animais , Transporte Biológico , HDL-Colesterol/metabolismo , Regulação para Baixo , Humanos , Macrófagos/metabolismo , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...